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Prior Knowledge-Based Probabilistic Collaborative
Representation for Visual Recognition

Rushi Lan , Yicong Zhou , Senior Member, IEEE, Zhenbing Liu, and Xiaonan Luo

Abstract—Collaborative representation is an effective way
to design classifiers for many practical applications. In this
paper, we propose a novel classifier, called the prior knowledge-
based probabilistic collaborative representation-based classifier
(PKPCRC), for visual recognition. Compared with existing clas-
sifiers which use the collaborative representation strategy, the
proposed PKPCRC further includes characteristics of training
samples of each class as prior knowledge. Four types of prior
knowledge are developed from the perspectives of image distance
and representation capacity. They adaptively accommodate the
contribution of each class and result in an accurate representation
to classify a query sample. Experiments and comparisons on four
challenging databases demonstrate that PKPCRC outperforms
several state-of-the-art classifiers.

Index Terms—Collaborative representation, prior knowledge,
representation-based classifier, visual recognition.

I. INTRODUCTION

THE CLASSIFIER targets determining one (or multiple)
class label(s) of a query sample and plays a crucial role

in many visual recognition tasks, ranging from face recogni-
tion [1], [2]; texture classification [3], [4]; landmark image
retrieval [5]; to image categorization [6]; hyperspectral image
classification [7], [8]; medical image retrieval [9]; and many
others. As a long-standing research topic, a huge effort has
been undertaken to develop all kinds of classifiers so far.

To design a classifier, an intuitive strategy lies in that
the query sample should have the identical label with
its closest one in the database. Following this idea, we
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can obtain the representative nearest neighbor (NN) clas-
sifier [10], which is easy to conduct with low computa-
tional cost yet is noise-sensitive. Nearest centroid (NC) and
k-NN are two simple variations of NN that are robust to
noise. More in-depth improvements of NN have been pro-
posed, such as nearest feature line [11], nearest feature
space [12], and neighborhood feature line segment [13].
These methods have shown satisfactory performance in various
applications.

Because the nature images can be sparsely represented by
structural primitives [14], Wright et al. [15] proposed a method
named a sparse representation-based classifier (SRC) for face
recognition. SRC sparsely codes a query face image over the
template ones and classifies it by the least coding error. Apart
from face recognition, SRC has been successfully applied
to other visual recognition tasks. Many improved versions
of SRC have been developed. Representative ones include
locality weighted SRCs [16], quaternionic SRCs [17], and
manifold-based SRCs [18].

After an extensive study of SRC, Zhang et al. [19] fur-
ther developed a collaborative representation-based classifier
(CRC) for face recognition. Unlike SRC, CRC determines the
label in terms of collaborative representation with regularized
least square, resulting in less complexity but completive per-
formance. SRC and CRC are both regarded as typical classi-
fiers using the representation-based strategy. Numerous efforts
have been devoted to improving CRC from diverse aspects,
such as the two-phase strategy [20], multiscale adaptive
version [21], coarse-to-fine representation [22], quaternionic
extension [17], and many others.

Recently, a probabilistic CRC (ProCRC) was developed by
Cai et al. [23] from the views of representation and probability.
By considering the representation coefficients of each class,
ProCRC achieves a more accurate representation of the test
sample than CRC. The success of ProCRC indicates that it
is possible to improve the representation-based classifiers by
refining the relationship between the query image and training
samples of each class. The problem now turns out to find a
useful relationship from the training samples.

In this paper, we propose a novel method, called prior
knowledge-based probabilistic CRC (PKPCRC), for visual
recognition. PKPCRC extracts the prior knowledge of each
class from the training set and then couples the obtained prior
knowledge when deriving the probability that the query image
belongs to a specific class. In this way, compared with CRC
and ProCRC, PKPCRC is more flexible and takes account of
more characteristics of the training samples. As a result, it is
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able to provide an accurate representation of the query sam-
ple for classification. Experimental results also demonstrate the
effectiveness of PKPCRC. In summary, the main contributions
of this paper are listed as follows.

1) PKPCRC is proposed as a novel classifier for visual
recognition. It further considers the prior knowledge
extracted from the training samples. The closed form
of PKPCRC is also provided.

2) We present four ways for PKPCRC to derive the prior
knowledge from the training images. They are derived
from the perspectives of image distance and representa-
tion capacity, respectively.

3) Experiments are conducted to evaluate the effective-
ness of PKPCRC using four benchmark databases. The
comparison results indicate that the proposed PKPCRC
achieves state-of-the-art performance.

This paper is an improved and extended version of our pre-
vious work [24]. In this paper, we provide a detailed derivation
and in-depth analysis of the proposed method, especially the
derivation of prior knowledge. Besides, competing results on
more benchmark databases and time complexity comparison
are given to comprehensively evaluate PKPCRC.

The remaining portion of this paper is organized as fol-
lows. Section II briefly reviews some related work. Section III
presents the proposed PKPCRC in detail, and Section IV
gives the ways to derive prior knowledge for PKPCRC.
Subsequently, Section V provides several experimental results
to evaluate PKPCRC. Finally, Section VI concludes this paper.

II. RELATED WORKS

In this section, we briefly review some related work as back-
ground knowledge. Some commonly used notations are first
provided. We represent each sample by a column vector. For
a visual recognition task with C categories, all training sam-
ples form a matrix A, i.e., A = [A1, A2, . . . , AC], where Ac is
the data matrix of the cth class. The label set of A is denoted
as lA. Spanning all elements of A, we can achieve a linear
subspace A. The corresponding subspace of each class Ac is
obtained similarly. Note that any element a ∈ A can be lin-
early represented as a = Ax, where x is the vector containing
the representation coefficients. Considering a test sample y,
our goal is to determine its label l(y) from lA.

A. NN and NC

As aforementioned, the NN classifier is to find a sample a′
from the training set A that has the smallest distance to y as
follows:

a′ = arg min
a∈A

‖y − a‖2 (1)

and then to assign the label of y to that of a′, i.e., l(y) =
l(a′). The NN classifier is the most simple one. However, it is
sensitive to noise because of the lack of any training procedure.

To improve the performance of the NN classifier, the NC
classifier uses the centroid to represent each class, denoting
the centroid of Ac by āc

tr, and then conducts the NN classifier

to y by

l(y) = arg min
c=1,...,C

∥
∥y − āc

tr

∥
∥

2. (2)

It can be seen that the derivation of āc
tr is able to remove

some noise; hence, the NC classifier is more robust to noise
than the NN classifier.

B. SRC

Unlike NN and NC classifiers, SRC determines the label of
a test sample by representing it using all training samples with
a sparsity constraint. SRC can be mathematically described as
follows:

x′ = arg min
x

‖y − Ax‖2
2 + λ‖x‖1 (3)

where λ denotes the regularization parameter. We then calcu-
late the residual of y and its sparse representation using Ac

by

rc(y) = ∥
∥y − Acx′

c

∥
∥

2 (4)

where x′
c is the corresponding coefficient vector associated

with the cth class in x′. The label of y is finally assigned by

l(y) = arg min
c

rc(y). (5)

C. LRC

LRC treats the classification of y in terms of linear regres-
sion. More specifically, it is a linear model that represents y via
a linear combination of the samples of the cth class. That is,

x′
c = arg min

xc
‖y − Acxc‖2

2. (6)

Based on x′
c in (6), the distance between y and the repre-

sented one is computed as

dc(y) = ∥
∥y − Acx′

c

∥
∥

2. (7)

Finally, the label of y can be obtained by

l(y) = arg min
c

dc(y). (8)

D. CRC and ProCRC

CRC is a simple yet effective method that collaboratively
represents the test sample y by all training samples in A [19].
Unlike the sparsity constraint used in SRC, the least square
constraint is utilized in CRC; hence, we can easily achieve its
closed-form solution. The CRC is mathematically modeled as

x′ = arg min
x

‖y − Ax‖2
2 + λ‖x‖2

2. (9)

Once the representation coefficient x′ is obtained, we can
compute the residual and determine the label as (4) and (5) in
the same way.

Apart from the view of collaborative representation, CRC
is explained from a probabilistic perspective [23]. Rather than
directly determining l(y), the probability that l(y) belongs to
lA is considered as

p(l(y) ∈ lA) ∝ exp
(

−
(

κ‖y − Ax‖2
2 + υ‖x‖2

2

))

(10)

where κ and υ are two constants.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LAN et al.: PRIOR KNOWLEDGE-BASED PROBABILISTIC COLLABORATIVE REPRESENTATION FOR VISUAL RECOGNITION 3

To maximize p(l(y) ∈ lA), we conduct the logarithmic
operator to it and yield the following result:

max p(l(y) ∈ lA) = max ln p(l(y) ∈ lA)

= minx κ‖y − Ax‖2
2 + υ‖x‖2

2

= minx ‖y − Ax‖2
2 + λ‖x‖2

2 (11)

where λ = υ/κ . As seen, (11) is equivalent to (9), but they
are derived from different perspectives, namely, probabilistic
interpretation and collaborative representation.

Equation (11) describes the probability that l(y) belongs to
lA. To improve CRC, Cai et al. [23] investigated the joint
probability of the test sample, i.e., p(l(y) = 1, . . . , l(y) = C),
and they finally derived the following ProCRC model:

x̂ = arg min
x

{

‖y − Ax‖2
2 + λ‖x‖2

2 + γ

C

C
∑

c=1

‖Ax − Acxc‖2
2

}

(12)

where γ is a constant. The joint probability refines the rela-
tion between y and each Ac, significantly improving the
performance of CRC.

III. PROPOSED APPROACH

This section presents the proposed PKPCRC algorithm in
detail. We first explain the motivation of PKPCRC and then
give its mathematical model. The optimization and classifica-
tion rule of PKPCRC are finally introduced.

A. Motivation

Observing (12), it can be seen that the success of ProCRC
is attributed to the third term

∑C
c=1 ‖Ax−Acxc‖2

2. It describes
the distance between two points, i.e., Ax ∈ A and Acxc ∈ Ac.
ProCRC attempts to find x to minimize the total distances
between Ax and {A1x1, . . . , ACxC}. On the other hand, we
can rewrite ‖Ax − Acxc‖2

2 as follows:

‖Ax − Acxc‖2
2 = ‖Ax‖2

2 + ‖Acxc‖2
2 − 2(Ax)T(Acxc). (13)

From the above formula, it can be seen that ProCRC
not only minimizes ‖Ax‖2

2 and ‖Acxc‖2
2 but also maximizes

their correlations via the inner product. Compared with CRC,
ProCRC further includes the intra-actions among Ax and Acxc,
providing a better representation for classification.

Ax and Acxc denote the representations of the test sample
using all training samples and those of the cth class. Note
that with a given training set, there must be some inherent
relations between A and Ac. To verify this observation, we
use all 40 male images from the AR face database [25] to
form a training set to study this. For simplicity, we set x and
xc to the same values, resulting in the centroids of A and
each Ac, respectively. Next, we calculate the correlation coef-
ficients between Ax and each Acxc. It is a normalized version
of (Ax)T(Acxc) in (13). The corresponding results are depicted
in Fig. 1. The maximum, minimum, and average values of
these correlation coefficients are 0.9236, 0.5722, and 0.8477,
respectively. However, these values cannot correctly describe
the relations between A and Ac because there are large vari-
ants within the captured images, such as the wearing of classes,

Fig. 1. Correlation coefficients between Ax and Acxc with equal represen-
tation coefficients using the 40 male images in the AR face database.

change of poses, and different facial expressions. Due to these
effects, it is difficult to find an accurate representation for the
test sample if the correlation coefficients are too large or too
small. In this paper, the proposed method aims to improve
the representation capacity by refining the relations between
A and Ac.

B. PKPCRC Model

Assume that ac = Acxc and a = ∑C
c=1 Acxc are two ele-

ments of Ac and A, respectively. Similar to ProCRC, the
proposed PKPCRC here considers the probability that a is
with the identical label as ac, and defines this probability as

p
(

l(a) = c
∣
∣
∣l(a) ∈ lA

)

∝ exp
(

−δβc‖a − Acxc‖2
2

)

(14)

where δ is a constant and βc is the prior knowledge. It should
be noted that (14) will be equivalent to the probability used
in ProCRC if we set the prior knowledge βc to be a uniform
distribution.

Equation (14) indicates that PKPCRC further takes account
of the prior knowledge βc in contrast to ProCRC, yielding the
following merits.

1) Note that a is the sum of {a1, a2, . . . , aC}. ProCRC
treats each distance ‖a − Acxc‖2

2 equally. Considering
PKPCRC, βc can be regarded as a weight to refine the
distance between a and its cth component ac. In this
way, PKPCRC handles each distance differently via βc

and is more flexible than ProCRC.
2) The prior knowledge βc is extracted from the training

samples; hence, more inherent characteristics of these
samples are considered. We need to find a proper way to
derive βc that represents the relation between all training
samples and those of the cth class. It is possible to obtain
a more accurate representation of y with βc.

Based on the above advantages, PKPCRC represents the test
sample y collaboratively using the prior knowledge βc and the
probability in (14).

Denote the probability that the test sample y belongs to
the cth class by p(l(y) = c). Using (14), p(l(y) = c) can be
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achieved as follows:

p(l(y) = c) = p(l(y) ∈ lA) · p(l(a) = c|l(a) ∈ lA)

∝ exp
(

−
(

‖y − Ax‖2
2 + λ‖x‖2

2 + γβc‖Ax − Akxk‖2
2

))

(15)

where γ = δ/κ . l(y) can be determined by directly maximiz-
ing p(l(y) = c) from all classes, but our experimental results
indicate that PKPCRC, similar to ProCRC, cannot obtain a
stable and discriminative representation of y in this way.

To further improve the representation capacity, PKPCRC
also uses the joint probability rather than the probability that
y belongs to the cth class only, yielding the following result:

max p(l(y) = 1, . . . , l(y) = C) = max
∏

c

p(l(y) = c)

∝ max exp

(

−
(

‖y − Ax‖2
2 + λ‖x‖2

2

+ γ

C

C
∑

c=1

βc‖Ax − Acxc‖2
2

))

. (16)

We conduct the logarithmic operator to the above equation
and ignore the constant term. Then, (16) transforms to

x̂ = arg min
x

{

‖y − Ax‖2
2 + λ‖x‖2

2

+ γ

C

C
∑

c=1

βc‖Ax − Acxc‖2
2

}

. (17)

In this paper, the obtained model in (17) is named PKPCRC.
It improves ProCRC by further coupling a prior knowledge to
represent the test sample.

C. Optimization and Classification Rule of PKPCRC

To optimize (17), we keep the cth component of A
unchanged and set the rest components to the 0 matrix,
yielding the following matrix A′

c = [0, . . . , Ac, . . . , 0]. Let
Ā

′
c = A−Ā

′
c. To achieve the closed-form solution of PKPCRC,

we first derive the following projection matrix:

M =
(

ATA + γ

C

C
∑

c=1

βc

(

Ā
′
c

)T
Ā

′
c + λI

)−1

AT (18)

where I is the identity matrix. Note that we can calculate the
above projection matrix M offline to alleviate the computa-
tion cost. Considering the test sample y, once the matrix M
is available via (18), the solution of PKPCRC in (17) can be
achieved by

x̂ = My. (19)

Now, the label of y can be determined with x̂. More specif-
ically, the probability that y belongs to the cth category can
be represented as

p(l(y) = c) ∝ exp
(

−
(∥
∥y − Ax̂

∥
∥

2
2 + λ

∥
∥x̂

∥
∥2

2

+ γβc
∥
∥Ax̂ − Akx̂k

∥
∥2

2

))

. (20)

Algorithm 1 PKPCRC
Input: A set of training samples A, a test sample y, the prior
information of each class {β1, · · · , βC}, and the parameter λ

and γ .
Output: The label of y.

(a) Calculate the projection matrix:

M = (ATA + γ

C

C
∑

c=1

βc(Ā
′
c)

T Ā
′
c + λI)−1AT .

(b) Obtain the representation of y: x̂ = My.
(c) Calculate the probability that y belongs to each class:

pc = exp(−‖Ax̂ − Acx̂c‖2
2).

(d) Predict the label: l(y) = arg maxc{pc}.

Then y will be classified to the class that accords to the
maximal probability, namely,

l(y) = arg max
c

{p(l(y) = c)}. (21)

Equations (20) and (21) provide one way to determine l(y).
However, we find that PKPCRC cannot achieve good clas-
sification results in this way. The reason is that βc used in
(20) causes a problem of overfitting the test sample. It can be
seen from (18) that βc has been used to derive the representa-
tion coefficients of y. Based on the derived x̂, (20) calculates
the probability using the prior knowledge for the second time.
This operation will make the obtained probability to follow the
distribution of the training samples, making adverse affects to
the classification accuracy.

To address the aforementioned problem, βc will not be con-
sidered to derive the probability in (20). For simplicity, we also
omit the constant terms. Finally, the probability that y belongs
to the cth class, denoted by pc, is represented as

pc = exp
(

−∥
∥Ax̂ − Acx̂c

∥
∥

2
2

)

. (22)

Then l(y) is determined using the following rule:

l(y) = arg max
c

{pc}. (23)

Algorithm 1 presents the detailed steps to implement the
proposed PKPCRC.

IV. STRATEGIES TO EXTRACT PRIOR KNOWLEDGE

The extraction of βc from the training samples is the vital
step for PKPCRC. Only the βc that correctly reveals the rela-
tionship between all training samples and those of the cth class
will improve the representation accuracy. In this section, we
will provide four different strategies to extract βc.

A. Distance-Based Prior Knowledge

As mentioned in Section III-A, the representation coeffi-
cients are expected to maximize the inner product between
Ax and Acxc. It can be observed from Fig. 1 that the mean of
one subject may have a too small or a too large inner prod-
uct to the mean of all subjects. It is hard to obtain accurate
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Algorithm 2 NC-Based Prior Knowledge
Input: A training set A containing C class samples, namely
A = [A1 Ac · · · AC].
Output: The NC-based prior information of each class
{β1

1 , · · · , β1
C}.

(a) Calculate the mean vectors of A and {Ac|c =
1, · · · , C} respectively, i.e., ātr and āc

tr
(b) For each āc

tr, compute the distance between ātr and
āc

tr as Eq. (24), c = 1, · · · , C.
(c) Derive the NC-based prior information {β1

1 , . . . , β1
C}

using Eq. (25).

representation coefficients for these subjects. To address this
problem, we use the prior knowledge to adjust those subjects
and propose the following prior knowledge methods.

1) NC-Based Prior Knowledge: Denote the mean vector of
all training samples of A by ātr, and āc

tr represents the mean
vector of those samples of the cth class. We calculate the
following distance between ātr and āc

tr:

d1
c = ∥

∥ātr − āc
tr

∥
∥2

2. (24)

Then the prior knowledge for A and Ac, denoted by β1
c , is

defined as

β1
c = exp(−dc) = exp

(

−∥
∥ātr − āc

tr

∥
∥2

2

)

. (25)

The extraction of β1
c indicates that two close centroids are

set with a larger weight, otherwise the far ones are given a
small weight. β1

c is denoted as the NC-based prior knowledge
because it is derived similarly to the NC classifier.

2) LDA-NC-Based Prior Knowledge: From the NC-based
prior knowledge described in Algorithm 2, it can be seen that
it is directly derived from the distance between two centroids.
Although the centroid is robust to noise, it heavily depends
on the data itself (or the used feature representations). This is
difficult to explore the essential structure of the data. That is,
the data may not be separable in the original space. Inspired
by the kernel method, here we first transform the original data
into another space in which the data is distributed separably.

There are several possible algorithms to transform the origi-
nal data according to specific rules. In this paper, we select the
commonly used linear discriminant analysis (LDA) because it
is able to maximize the between-class scatter while minimiz-
ing the within-class scatter. In this situation, with the training
set A, we remove the mean vector from each sample of A
and then compute the total scatter matrix. After that, we find
a number of eigenvectors by decreasing the corresponding
eigenvalues and finally project the elements of A using the
obtained eigenvectors.

After LDA, we represent all the training samples and those
for the cth class using B and Bc, respectively. Similarly, let
b̄tr be the mean vector of all training samples in B, while b̄

c
tr

is the mean vector of the cth training samples in Bc. Then
the LDA-NC-based prior knowledge, denoted by β2

c , can be
achieved as follows:

d2
c =

∥
∥
∥b̄tr − b̄

c
tr

∥
∥
∥

2

2
(26)

Algorithm 3 LDA-NC-Based Prior Knowledge
Input: A training set A containing C class samples, namely
A = [A1 Ac · · · AC].
Output: the LDA-NC-based prior information of each class
{β2

1 , · · · , β2
C}.

(a) Conduct LDA to A, getting the transformed data B =
[B1, B2, · · · , BC];

(b) Calculate the mean vectors of B and {Bc|c =
1, · · · , C} respectively, i.e., b̄tr and b̄

c
tr

(c) For each b̄
c
tr, compute the distance between b̄tr and

b̄
c
tr as Eq. (24), c = 1, · · · , C.

(d) Derive the LDA-NC-based prior information {β2
1 ,

. . . , β2
C} using Eq. (25).

β2
c = exp

(

−d2
c

)

= exp

(

−
∥
∥
∥b̄tr − b̄

c
tr

∥
∥
∥

2

2

)

. (27)

B. Representation-Based Prior Knowledge

As previously mentioned, βc can be regarded as a weight
to balance Ax and Acxc. It can be seen that NC-based prior
knowledge and LDA-NC-based prior knowledge measure the
weight via the Euclidean distance. The existing algorithms
described in Section II indicate that, apart from the Euclidean
distance, the representation residual is an important way for
classification. Hence, we also develop the prior knowledge in
terms of representation perspectives.

Here, we divide the training samples A into two parts,
denoted as Ad and Ar. The samples of Ar will be represented
by the samples of Ad. The representative LRC and CRC meth-
ods are considered to derive prior knowledge in this paper as
follows.

1) LRC-Based Prior Knowledge: In the LRC model, a test
sample is represented by the training ones of the cth class.
Following this framework, we make use of Ad

c , the samples of
Ad belonging to the cth class, to represent Ar. Assume that yr

is a sample of Ar; hence, it can be described by

ỹr = Ac

(

Ad
c

T
Ad

c

)−1
Ad

c
T

yr. (28)

Then the residual of yr is ‖yr−ỹr‖. Considering all elements
of Ar, the total residual can be achieved by

rc
(

Ar) =
∑

yr∈Ar

∥
∥yr − ỹr

∥
∥ (29)

where rc(Ar) is considered as a special distance between Ad
c

and Ar. Similar to the distance-based prior knowledge, we
derive the LRC-based prior knowledge, denoted by β3

c , in the
following way:

β3
c = exp

(−rc(Ar)
)

. (30)

2) CRC-Based Prior Knowledge: In contrast with LRC,
CRC represents the test sample using all training ones. Hence,
Ad is used to represent yr ∈ Ar, resulting in the following
representation coefficient:

xr =
(

(Ad)TAd + λ̄I
)−1(

Ad
)T

yr. (31)
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Algorithm 4 LRC-Based Prior Knowledge
Input: A training set A containing C class samples, namely
A = [A1 Ac · · · AC].
Output: The LRC-based prior information of each class
{β3

1 , · · · , β3
C}.

(a) Separate Ac, the training samples of the cth class,
into Ad

c and Ar
c, c = 1, · · · , C;

(b) Represent each sample of Ar by Eq. (28);
(c) Compute the total residual as Eq. (29);
(d) Derive the LRC-based prior knowledge {β3

1 , . . . , β3
C}

using Eq. (30).

Algorithm 5 CRC-Based Prior Knowledge
Input: A training set A containing C class samples, namely
A = [A1 Ac · · · AC].
Output: The CRC-based prior information of each class
{β4

1 , · · · , β4
C}.

(a) Separate Ac, the training samples of the cth class,
into Ad

c and Ar
c, c = 1, · · · , C; Denote Ad =

[Ad
1, · · · , Ad

C] and Ar = [Ar
1, · · · , Ar

C].
(b) Represent each sample of Ar by Eq. (31);
(c) Compute the total residual as Eq. (32);
(d) Derive the CRC-based prior knowledge {β4

1 , . . . , β4
C}

using Eq. (33).

Then we use the elements of xr that are associated with the
cth class, denoted by xr

c, to study the relation between A and
Ac as ‖Adxr −Ad

c xr
c‖2. Considering all elements of Ar, we can

derive the CRC-based prior knowledge β4
c by

rc
(

Ar) =
∑

yr∈Ar

∥
∥
∥Adxr − Ad

c xr
c

∥
∥
∥ (32)

β4
c = exp

(−rc
(

Ar)). (33)

We summarize the detailed implementations of the above-
mentioned extraction methods as Algorithms 2–5. Here, we
also take the well-known Caltech-256 database as an example
to derive the corresponding prior knowledge. Thirty samples
for each class are randomly selected from the whole database
to form the training set. Fig. 2 illustrates the first 100 elements
of NC, LNC, LRC, and CRC-based prior knowledge extrac-
tion methods, respectively. We can observe that these prior
knowledge extraction methods differ from each other.

C. Discussion

From the detailed derivation of PKPCRC, we can observe
that it can be considered as a two-phase classification model,
including prior knowledge extraction and calculation of the
representation coefficients, respectively. Considering a visual
recognition task, there must be a specific inherent relation
among the samples of different classes. The prior knowledge,
obtained in the first phase, aims to explore some useful infor-
mation from the training data. This information will change
the inherent relation of the original training data such that it
benefits to obtain a more accurate representation of the test
sample in the second phase.

Fig. 2. Examples of the prior knowledge using 30 training images per class
for the Caltech-256 database. (a)–(d) Correspond to the NC, LDA-NC, LRC,
and CRC-based prior knowledge. Note that only the first 100 numbers are
plotted here.

In this section, we provide four extraction methods of prior
knowledge for PKPCRC, namely, NC-based, LDA-NC-based,
LRC-based, and CRC-based prior knowledge. They are
derived from the perspectives of image distance and repre-
sentation capacity. The first two methods are based on the
distances between the centroids of all training samples and
those of the cth class, while the other two methods make use of
the representation error. The small distance and representation
error give large weights as prior knowledge, resulting in that
the training samples of each class have a uniform distribution.
This operation can remove the effect of some noise samples
such that it is easy to find accurate representation coefficients
for the test sample. Because the inherent relations among the
samples of different class vary, PKPCRC with different types
of prior knowledge achieves different performances on the
same database.

V. EXPERIMENTAL RESULTS

In this section, we will carry out several experiments to eval-
uate the classification performance of PKPCRC by comparing
it with some state-of-the-art methods. First, the used databases
and experimental setting are introduced. Subsequently, the
study of the representation data and results on four different
databases is given, respectively. Finally, a comparison of time
complexity is provided.

A. Databases and Experimental Settings

In the following experiments, four benchmark databases,
namely, Caltech-UCSD Birds (CUB200-2011) [26], Caltech-
256 [27], Oxford 102 Flowers [28], and Stanford 40
Actions [29], are utilized to evaluate the performance of all
competing algorithms. A brief introduction of these databases
are presented as follows.

1) Caltech-UCSD Birds (CUB200-2011) Database [26]:
This database is composed of 200 different bird
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TABLE I
SUMMARY OF THE USED DATABASES IN THE EXPERIMENTS

categories, forming 11 788 images in total. It is a diffi-
cult task to recognize these images because of the large
similarity among some bird categories. There are about
60 images for each category on average.

2) Caltech-256 Database [27]: Consisting of totally 30 608
object images of 256 categories, this database is popu-
larly applied to assess several large-scale image classi-
fication methods. The objects in this database include
zebra, waterfall, owl, and many others. The image
number of each category changes from 80 to 827.

3) Oxford 102 Flowers Database [28]: This database is
commonly used for the fine-grained image classifica-
tion, including 8198 flower images from 102 different
categories. Apart from the large variations within each
category, these images were captured under various
scales, pose, and lighting conditions. There are 40–258
flower images for each category.

4) Stanford 40 Actions Database [29]: This database con-
tains 40 different human actions, such as applauding,
climbing, cooking, and running. The number of images
is 9352 in total. It contains 180–300 images per category.

Table I also gives a summary of these databases, including
the class numbers, image number in each category, and total
image numbers, respectively.

To better classify an unknown image, we also need a dis-
criminative and robust feature representation for images. Many
well-known features, such as scale-invariant feature trans-
form [30], local binary pattern [31], and their improvements,
have been proposed to describe the image contents. But these
features are hand-crafted ones, and they cannot provide high
level and abstract representation of images. In this paper, the
recent CNN features, extracted via VGG-verydeep-19 [32],
are applied here, resulting in a 4096 × 1 vector as the feature
representation of images for classification.

Based on the prior knowledge extraction methods in
Section IV, we can derive for classifiers, which are denoted
PKPCRC-NC, PKPCRC-LNC, PKPCRC-LRC, and PKPCRC-
CRC, respectively. The proposed methods involve some
parameters that are determined as follows. In (18), λ is empir-
ically set to 0.1, while γ is selected by a fivefold cross
validation on the training set. Besides, the parameter λ̄ in (31)
is set to 0.01 to derive the CRC-based prior knowledge.

B. Study of the Data Separation

For the LRC and CRC-based prior knowledge, we have to
further separate the training data into two parts. The first part
is used as a training set, while the second part is used as
a test set. The prior knowledge is obtained by representing
the second part by the first part. The separation of training
data will affect the obtained prior knowledge. Here, we study

Fig. 3. Classification performance of PKPCRC-LRC and PKPCRC-CRC on
the Caltech-256 database using different ratios of training samples. The ratio
here is set to 0.3, 0.4, . . . , and 0.7, respectively.

the performance of PKPCRC-LRC and PKPCRC-CRC with
different separation ratios.

The Caltech-256 database is applied here. We choose 30
images from each category to form the training data, which
is divided into two parts. The ratio of the first part is set to
0.3, 0.4, . . . , and 0.7, respectively. The average results of ten
repeats for PKPCRC-LRC and PKPCRC-CRC are plotted in
Fig. 3. From these results, we can find that PKPCRC-LRC is
more sensitive to the partition ratio than PKPCRC-CRC. When
the ratio is 0.5, PKPCRC-LRC achieves the best classification
performance, while it is 0.4 for PKPCRC-CRC. When the par-
tition ratio is 0.4 or 0.5, PKPCRC-CRC achieves comparable
classification performance. Therefore, in the following exper-
iments, we equally separate the training data into two parts to
extract prior knowledge.

C. Results on the CUB200-2011 Database

In this experiment, the training and testing sets, given in
the CUB200-2011 database, are used for evaluation. Each bird
category contains about 30 samples in the training set, while
the rest of the images form the testing set. The following
competing algorithms are selected for comparison, including
NN [10], NC, Softmax [33], SVM [34], Kernel SVM [34],
NSC [35], CRC [19], SRC [15], CROC [36], ProCRC [23],
PN-CNN [37], FV-CNN [38], and POOF [39], respectively.
The classification performance of all these classifiers and the
proposed PKPCRC are illustrated in Table II.

From the results in Table II, we can observe that the classi-
fication rate of NN is 50.1%, which is the worst performance
in this situation because NN, as aforementioned, is a sim-
ple and native classifier without the help of training. NC,
which applies the centroid representation to replace the nearest
sample, surpasses NN by about ten percentages. The well-
known representation-based methods, namely, CRC, SRC, and
CROC, obtain comparable accuracy for this databases. Their
results are all about 76%. The kernel SVM slightly outper-
forms CRC, SRC, and CROC. The performance of ProCRC,
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TABLE II
CLASSIFICATION PERFORMANCE (%) OF DIFFERENT

CLASSIFIERS ON CUB200-2011 DATABASE

derived from a probabilistic view, is superior to those of other
competing methods. The proposed PKPCRC-based classifiers
all work better than other competing algorithms. PKPCRC-
LRC and PKPCRC-CRC achieve the same results for this
database, while PKPCRC-LRC obtains the most satisfactory
performance in contrast to other methods.

The proposed PKPCRC methods are also compared with
three state-of-the-art algorithms, namely, POOF, FV-CNN, and
PN-CNN. They are derived using a specially developed CNN
architecture for bird recognition. PN-CNN works better than
NN, NC, Softmax, SVM, and NSC. The classification rates of
the proposed methods are all higher than that of PN-CNN at
least three percentages.

D. Results on the Caltech-256 Database

In this experiment, we evaluate the performance of
PKPCRC using the Caltech-256 database. In this situation,
the commonly used experimental setting is considered here.
That is, we randomly select N images from each category to
form the training set. The images, except for the training set,
are regarded as test images. We run this procedure for ten
times to achieve an average classification rate for each com-
peting algorithm. In the following experiments, the number of
training images for each category N is set to 15, 30, and 45,
respectively.

Table III shows the results of different algorithms when N
is set to 30. Note that ZF [40], M-HMP [41], LLC [42], and
ScSPM [43] are traditional methods that are not based on the
CNN features, while the rest classifiers determine the class
label of each test image by the aforementioned CNN feature.
It can be seen that NC with the CNN feature works better
than the traditional four methods. The performance of kernel
SVM is superior to those of Softmax, SVM, NSC, and CRC
and is the same as that of SRC. ProCRC outperforms kernel
SVM and SRC by two percentages. Considering the proposed
methods, PKPCRC-NC achieves the best accuracy, which is
1% higher than that of ProCRC.

The classification results of LLC, M-HMP, ZF, ProCRC,
PKPCRC-NC, and PKPCRC-LRC are plotted in Fig. 4, and

TABLE III
CLASSIFICATION PERFORMANCE (%) OF DIFFERENT CLASSIFIERS ON

THE CALTECH-256 DATABASE WITH 30 TRAINING SAMPLES

Fig. 4. Classification rates of different classifiers, including LLC, M-HMP,
ZF, ProCRC, PKPCRC-NC, and PKPCRC-LRC, on the Caltech-256 database
using 15, 30, and 45 training samples.

N is set to 15, 30, and 45, respectively. We can observe that
ProCRC and the proposed two methods here significantly sur-
pass the competing schemes here. When the training number
of each class is set to 15, PKPCRC-NC and PKPCRC-LRC
outperform ProCRC by 1.2% and 1.1%. When N increases
to 45, PKPCRC-NC works better than PKPCRC-LRC, and it
improves ProCRC by 0.7%.

E. Results on the Oxford 102 Flowers Database

The experiment on this database is conducted using the set-
ting reported in [23] and [28]. Table IV shows the performance
of different classifiers. For this database, the classification
rates of NN, NC, Softmax, OverFeat [44], GMP [45], BiCos
seg [46], and DAS [47] are all smaller than 90%, and Softmax
achieves the best result among these methods. The kernel
SVM outperforms SVM and NSC, but its result is worse than
those of CRC, SRC, CROC, ProCRC, and the proposed ones.
Considering the proposed classifiers, their classification rates
are all higher than 95%. PKPCRC-LNC and PKPCRC-CRC
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TABLE IV
CLASSIFICATION PERFORMANCE (%) OF DIFFERENT CLASSIFIERS ON

THE OXFORD 102 FLOWERS DATABASE

obtain the same performance here, whose classification rates
are better than that of ProCRC by 0.6%. PKPCRC-NC slightly
outperforms the LNC-based and CRC-based prior knowledge
for PKPCRC. Among four proposed classifiers, PKPCRC-
LRC achieves the highest classification rate for this database,
which is 1% and 1.6% higher than those of PKPCRC-LNC
and ProCRC, respectively.

F. Results on the Stanford 40 Actions Database

In this experiment, following the experimental setting used
in [23] and [29], we applied 100 images from each cat-
egory, totally 4000 images, for training and the rest 5352
images for test. Apart from the representation-based classi-
fiers, ASPD [48] and SMP [49] are also considered here.
The classification performance of all competing algorithms are
illustrated in Table V. For this database, it can be observed
that the learning-based classifiers all outperform the tradi-
tional NN and NC. CRC and SRC achieve 78.2% and 78.7%,
while SVM and kernel SVM all works better than CRC
and SRC. The ProCRC, probabilistic extension of CRC, sur-
passes SVM, kernel SVM, CRC, and SRC by 1% at least.
Considering the proposed methods, PKPCRC-NC slightly out-
performs ProCRC by 0.3%. The rest three classifiers obtain
similar results, all about 82%, and work better than other
competing classifiers.

G. Time Complexity Analysis

Efficiency of a classifier is also an important aspect in a
recognition system apart from the accuracy. In this experiment,
we will study the time complexity of the proposed PKPCRC.
Cai et al. [23] pointed out that ProCRC and CRC take the
same running time, and their speeds are faster than those
of SRC and CROC. Considering PKPCRC, it further takes
account of the prior knowledge, resulting in additional running
time compared to ProCRC. As described in Section IV, four
types of prior knowledge were introduced, and they will need
a different time complexity. Here, we take the Caltech-256
database as an example to quantitatively compare the running

TABLE V
CLASSIFICATION PERFORMANCE (%) OF DIFFERENT CLASSIFIERS ON

THE STANFORD 40 ACTIONS DATABASE

Fig. 5. Running time of related operations for PKPCRC and ProCRC. t1, t2,
and t3 are the running times of LNC, LRC, and CRC-based prior knowledge,
while t4 is the running time of the projection matrix of ProCRC in (18).

times of each prior knowledge. Fifteen training samples for
each category are randomly selected from the whole database
to derive the corresponding prior knowledge, and this proce-
dure is repeated ten times to obtain an average running time.
The NC-based prior knowledge, as the simplest one, takes the
shortest running time, which is 0.1141 s. We denote the run-
ning times of LNC, LRC, and CRC-based prior knowledge by
t1, t2, and t3, respectively. The running time of (18), denoted
by t4, is also considered here because it is a key part to get
the closed form. The results are plotted in Fig. 5, where the
detailed values of t1–t4 are 14.0744, 86.0704, 22.7782, and
102.2426, respectively. It can be seen that the LRC-based prior
knowledge takes much more time in contrast with other two
types of prior knowledge. However, compared with the deriva-
tion of the projection matrix, it takes less time to achieve the
prior knowledge.

VI. CONCLUSION

In this paper, we presented a novel classifier called PKPCRC
for visual recognition. As a representation-based classifier,
in contrast with some existing ones, PKPCRC further takes
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a prior knowledge into account to achieve a more accurate
representation of the query image. The prior knowledge is
used to change the contribution of each class in the train-
ing set. We also provided four extraction methods of prior
knowledge for PKPCRC that were derived from different per-
spectives. Four visual recognition tasks were used to evaluate
the proposed PKPCRC, and the comparison results indicated
that the proposed ones obtain better performance in contrast
with some state-of-the-art classifiers. In the future, there are
some interesting problems deserving further studies based on
PKPCRC. For example, we can couple the developed prior
knowledge into other classifiers or extract the prior knowledge
using the deep learning techniques.
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